
Page	1	of	2

Nodes

Dijkstra's	algorithm	(or	Dijkstra's	Shortest	Path	First	algorithm,	SPF	algorithm)	is	an	algorithm	for	finding	the
shortest	paths	between	nodes	in	a	graph,	which	may	represent,	for	example,	road	networks.	It	was	conceived	by
computer	scientist	Edsger	W.	Dijkstra	in	1956	and	published	three	years	later.

The	algorithm	exists	in	many	variants.	Dijkstra's	original	algorithm	found	the	shortest	path	between	two	given
nodes,	but	a	more	common	variant	fixes	a	single	node	as	the	"source"	node	and	finds	shortest	paths	from	the
source	to	all	other	nodes	in	the	graph,	producing	a	shortest-path	tree.

For	a	given	source	node	in	the	graph,	the	algorithm	finds	the	shortest	path	between	that	node	and	every	other.	It
can	also	be	used	for	finding	the	shortest	paths	from	a	single	node	to	a	single	destination	node	by	stopping	the
algorithm	once	the	shortest	path	to	the	destination	node	has	been	determined.	For	example,	if	the	nodes	of	the
graph	represent	cities	and	edge	path	costs	represent	driving	distances	between	pairs	of	cities	connected	by	a
direct	road	(for	simplicity,	ignore	red	lights,	stop	signs,	toll	roads	and	other	obstructions),	Dijkstra's	algorithm	can
be	used	to	find	the	shortest	route	between	one	city	and	all	other	cities.	A	widely	used	application	of	shortest	path
algorithm	is	network	routing	protocols,	most	notably	IS-IS	(Intermediate	System	to	Intermediate	System)	and
Open	Shortest	Path	First	(OSPF).	It	is	also	employed	as	a	subroutine	in	other	algorithms	such	as	Johnson's.
There	is	no	question.

The	Dijkstra	algorithm	uses	labels	that	are	positive	integers	or	real	numbers,	which	are	totally	ordered.	It	can	be
generalized	to	use	any	labels	that	are	partially	ordered,	provided	the	subsequent	labels	(a	subsequent	label	is
produced	when	traversing	an	edge)	are	monotonically	non-decreasing.	This	generalization	is	called	the	generic
Dijkstra	shortest-path	algorithm.

Let	the	node	at	which	we	are	starting	be	called	the	initial	node.	Let	the	distance	of	node	Y	be	the	distance	from	the
initial	node	to	Y.	Dijkstra's	algorithm	will	assign	some	initial	distance	values	and	will	try	to	improve	them	step	by
step.

1.	 Mark	all	nodes	unvisited.	Create	a	set	of	all	the	unvisited	nodes	called	the	unvisited	set.
2.	 Assign	to	every	node	a	tentative	distance	value:	set	it	to	zero	for	our	initial	node	and	to	infinity	for	all	other

nodes.	Set	the	initial	node	as	current.[16]
3.	 For	the	current	node,	consider	all	of	its	unvisited	neighbours	and	calculate	their	tentative	distances	through

the	current	node.	Compare	the	newly	calculated	tentative	distance	to	the	current	assigned	value	and	assign
the	smaller	one.	For	example,	if	the	current	node	A	is	marked	with	a	distance	of	6,	and	the	edge	connecting	it
with	a	neighbour	B	has	length	2,	then	the	distance	to	B	through	A	will	be	6	+	2	=	8.	If	B	was	previously	marked
with	a	distance	greater	than	8	then	change	it	to	8.	Otherwise,	the	current	value	will	be	kept.

4.	 When	we	are	done	considering	all	of	the	unvisited	neighbours	of	the	current	node,	mark	the	current	node	as
visited	and	remove	it	from	the	unvisited	set.	A	visited	node	will	never	be	checked	again.

5.	 If	the	destination	node	has	been	marked	visited	(when	planning	a	route	between	two	specific	nodes)	or	if	the
smallest	tentative	distance	among	the	nodes	in	the	unvisited	set	is	infinity	(when	planning	a	complete
traversal;	occurs	when	there	is	no	connection	between	the	initial	node	and	remaining	unvisited	nodes),	then
stop.	The	algorithm	has	finished.

6.	 Otherwise,	select	the	unvisited	node	that	is	marked	with	the	smallest	tentative	distance,	set	it	as	the	new
"current	node",	and	go	back	to	step	3.

Time	Limit:	3.0s 	 Memory	Limit:	64M



Page	2	of	2

When	planning	a	route,	it	is	actually	not	necessary	to	wait	until	the	destination	node	is	"visited"	as	above:	the
algorithm	can	stop	once	the	destination	node	has	the	smallest	tentative	distance	among	all	"unvisited"	nodes	(and
thus	could	be	selected	as	the	next	"current").

enter	image	description	here

Input	Specification

The	first	line	will	contain	five	space-separated	integers,	N,M,A,B,V.

The	next	M	lines	will	each	contain	two	space-separated	integers,	a,b	(1≤a,b≤N,a≠b),	indicating	that	node	a	and
node	b	are	connected	by	an	edge.	It	is	guaranteed	there	is	only	one	edge	between	any	2	nodes.

Output	Specification

Output	"the	answer	to	the	question	stated	above."

Source:	Wikipedia


